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An important question is to what extent metabolic fluxes are
regulated by gene expression or by metabolic regulation. There are
two distinct aspects to this question: (i) the local regulation of the
fluxes through the individual steps in the pathway and (ii) the
influence of such local regulation on the pathway’s flux. We
developed regulation analysis so as to address the former aspect
for all steps in a pathway. We demonstrate the method for the
issue of how Saccharomyces cerevisiae regulates the fluxes
through its individual glycolytic and fermentative enzymes when
confronted with nutrient starvation. Regulation was dissected
quantitatively into (i) changes in maximum enzyme activity (Vmax,
called hierarchical regulation) and (ii) changes in the interaction of
the enzyme with the rest of metabolism (called metabolic regula-
tion). Within a single pathway, the regulation of the fluxes through
individual steps varied from fully hierarchical to exclusively met-
abolic. Existing paradigms of flux regulation (such as single- and
multisite modulation and exclusively metabolic regulation) were
tested for a complete pathway and falsified for a major pathway
in an important model organism. We propose a subtler mechanism
of flux regulation, with different roles for different enzymes, i.e.,
‘‘leader,’’ ‘‘follower,’’ or ‘‘conservative,’’ the latter attempting to
hold back the change in flux. This study makes this subtlety, so
typical for biological systems, tractable experimentally and invites
reformulation of the questions concerning the drives and con-
straints governing metabolic flux regulation.

gene expression and metabolic regulation � glycolysis �
regulation analysis � metabolic control analysis

The flux through a metabolic pathway is determined by the
activities of its enzymes and by their interactions with other

enzymes. Metabolic-f lux changes have often been observed in
response to environmental or genetic changes. In the yeast
Saccharomyces cerevisiae, for example, changes in glycolytic f lux
have frequently been found to be accompanied by a myriad of
changes in glycolytic enzyme activities (e.g., 1, 2, this work) or
amounts (3), which varied in magnitude and direction. The
complexity of interactions between enzymes translates into a
vast possibility space of combinations of enzyme-activity mod-
ulations leading to the same flux change. We wondered how the
cell actually regulates its f luxes.

Among the proposed mechanisms for metabolic-f lux changes,
the two clearest hypotheses are (i) modulation of single rate-
limiting enzymes and (ii) multisite modulation, i.e., simultaneous
and proportional modulation of all enzymes in the pathway, thus
causing a change in flux while leaving metabolite concentrations
unchanged (4). Although single rate-limiting enzymes exist,
control of f lux is quite often distributed over several enzymes
(5). In the latter case, modulation of a single enzyme is likely to
be an ineffective mechanism for changing a pathway’s f lux.
Indeed, attempts to correlate flux changes with changes in single

enzyme activities or levels have failed consistently (1–3). In
contrast, the opposing theory of multisite modulation has met
supporting examples, such as lipogenesis in mice, the urea cycle
in rats, and photosynthesis in green plants (4). It is not clear,
however, how general this mechanism is and whether, indeed, all
enzyme activities changed in proportion to the flux.

An important question is to what extent metabolic f luxes are
regulated by enzyme capacity (Vmax) and to what extent by
metabolic regulation. According to one paradigm, metabolic
f luxes at steady-state are regulated through enzyme-capacity
changes (e.g., achieved through changes in gene expression). An
orthogonal paradigm has metabolic regulation as dominant.
Single- and multisite modulations assume that flux changes are
regulated through changes in the capacity of enzymes within the
pathway, e.g., through transcription regulation and�or through
covalent modification. The single-enzyme-modulation hypothe-
sis does not exclude the possibility of metabolic regulation, but
it does assume a leading role of gene expression. In its strongest
form, multisite modulation, on the other hand, excludes the
possibility of metabolic regulation and proposes metabolite
homeostasis as a constraint to regulatory processes. In fact,
strong metabolite homeostasis of the glycolytic intermediate
glucose-6-phosphate has been demonstrated in rat and human
muscle during large changes in glucose consumption, and the
mechanism through which metabolite homeostasis was attained
has been clearly elucidated (6).

The complexity of interactions and our ignorance of the drives
and constraints governing regulatory processes may seem to
preclude understanding of flux regulation and to rule out the
possibility of testing the above paradigms experimentally. In this
article, we demonstrate an unambiguous and quantitative de-
scription of regulatory processes that may provide a first step
toward understanding them: We use regulation analysis (7, 8) to
dissect quantitatively the contributions of changes in maximum
enzyme activities (Vmax) and changes in the interactions of the
enzyme with the rest of metabolism to the regulation of fluxes
through individual enzymes.

The idea is as follows. Because enzymes are catalysts (and not
substrates), enzyme rate equations are usually of the shape

v � v�e, X, K) � f�e)�g�X, K). [1]
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in which v is the rate, e is the concentration of enzyme, X is a
vector of concentrations of substrates, products, and other
metabolic effectors, and K is a vector of constants parameter-
izing the strength with which the enzymes interact with their
substrates, products, and allosteric effectors. The important
characteristic of the above equation is that the multipliers are
cross-independent, meaning that f does not depend on X and K,
and g does not depend on e. Exceptions to this equation exist, for
instance in some cases of strong substrate channeling. f(e)
describes the dependency of the rate on the enzyme concentra-
tion and can be taken to equal Vmax, whereas g(X, K) describes
the interaction of the enzyme with the rest of metabolism
through metabolite concentrations and the corresponding affin-
ity constants.

The dissection and quantification of f and g is achieved by
translating the above equation into logarithmic space, consid-
ering a change between two steady states, and dividing both sides
of the equation by the relative change in steady-state flux J.
Because at steady state, the flux J equals the enzyme rate v, this
results in

1 �
�log f�e)

�log J
�

� log g�X, K)
�log J

� �h � �m. [2]

�h is the ‘‘hierarchical regulation coefficient,’’ quantifying the
relative contribution of changes in active enzyme concentration
to the regulation of the enzyme’s flux. �m is the ‘‘metabolic
regulation coefficient,’’ quantifying the relative contribution of
changes in the interaction of the enzyme with the rest of
metabolism to the regulation of the enzyme’s flux. For a more
elaborate description and discussion of the method, see ref. 8.
The term hierarchical regulation coefficient was introduced by
Ter Kuile and Westerhoff (7) because the Vmax depends on the
complete gene-expression cascade of transcription, translation,
posttranslational modification, and mRNA and protein degra-
dation. The two regulation coefficients sum up to one (summa-
tion theorem for the regulation of flux), implying that determi-
nation of one will yield the other automatically (7, 8). In practice,
the hierarchical regulation coefficient is more readily deter-
mined, because f(e) can usually be taken to equal Vmax, and the
Vmax and the flux J through the enzyme can be measured or
estimated in most cases. Regulation analysis introduces the
possibility of making unambiguous and quantitative descriptions
of the regulation of fluxes through individual enzymes embed-
ded in biochemical networks of any complexity, in response to
any number or kind of simultaneous perturbations.

In this study, regulation analysis is applied to the regulation of
the flux through individual glycolytic and fermentative enzymes
in S. cerevisiae during nutrient starvation. Starvation for nutri-
ents is perhaps one of the most common stress conditions
experienced by microorganisms in their natural habitat, and it
may affect most of the organisms’ life spans. Nutrient starvation
is also relevant for the industrial production of baker’s yeast. At
the final stages of production and during storage, cells are
starved, affecting several quality parameters, among which is the
fermentative capacity (3, 9) (the specific rate of CO2 production
under anaerobic conditions with excess of sugar, which almost
equals the rate of ethanol formation) (2).

Using regulation analysis, we here dissect quantitatively the
regulation of fluxes through individual glycolytic and fermen-
tative enzymes in response to nutrient starvation. Our experi-
mental results served to test three regulatory paradigms (i.e.,
single enzyme, multisite, and all metabolic). The results evidence
a more subtle regulation of cell function and show that this
method allows delineating experimentally the regulation of flux.
Our results suggest that different enzymes in a common pathway
play different roles in the regulation of the pathway’s f lux.

Results
Steady-State Fluxes. We first measured the overall steady-state
fluxes of glucose, ethanol, glycerol, acetate, succinate, glycogen,
and trehalose under standardized conditions of growth and
starvation. Subsequently, these data were used to calculate the
intracellular fluxes through the individual enzymes. S. cerevisiae
CEN.PK 113–7D was grown in a well aerated and pH-controlled
batch culture. An aliquot of cells was harvested during expo-
nential growth and split into three parts. One part (referred to
as unstarved) was washed and transferred to an anaerobic vessel
with a fresh and complete medium with excess of glucose (101
mM). This condition was meant to mimic the situation of baker’s
yeast in dough (2). The above-mentioned fluxes were then
measured over a period of 30 min. The other two batches of cells
were washed and transferred to fresh medium, lacking either
ammonium (nitrogen-starved cells) or glucose (carbon-starved
cells). After 24 h, the starved cells were harvested, and the fluxes
were measured in a complete medium in the same way as was
done for the unstarved cells.

Fig. 2 and Table 1 show the measured fluxes. In all conditions,
the consumed carbon matched the produced carbon within
experimental error. The production fluxes of acetate and suc-
cinate were always �1% of the rate of glucose consumption
(data not shown). Nitrogen starvation and carbon starvation
resulted in a significant and substantial decrease of both the
consumption of glucose and the production of ethanol and
glycerol under the abundance conditions of the steady-state

Fig. 2. Carbon-flux balances. The carbon fluxes for each condition are
represented with two columns: one depicting the consumed carbon (open
columns) and the other the produced carbon (dark shaded areas). Columns are
divided into fluxes: glucose (open columns), storage carbohydrates (diago-
nally striped area), glycerol (black areas), ethanol (light shaded columns), and
CO2 (calculated from the ethanol and acetate production) (dark shaded areas).
Error bars represent SEMs of the sum of consumed or produced carbon fluxes
of four independent experiments carried out with different batches of cells.
Glycogen was measured in only two of the experiments; the average was used
as the glycogen-degradation rate of the other two, in which glycogen was not
measured.

Table 1. Measured fluxes

Metabolite Unstarved Nitrogen-starved Carbon-starved

Glucose �0.62 � 0.03 �0.16 � 0.02 �0.17 � 0.03
Glycerol 0.13 � 0.01 0.06 � 0.01 0.04 � 0.00
Ethanol 1.04 � 0.03 0.49 � 0.05 0.33 � 0.05
Trehalose 0.00 � 0.00 �0.01 � 0.00 0.00 � 0.00
Glycogen 0.00 � 0.00 �0.03 � 0.01 0.00 � 0.00

Experimentally measured fluxes are reported in �mol of the compound per
minute per mg of protein for each condition. Negative values represent fluxes
feeding the pathway, and positive values represent outgoing fluxes. Errors are
SEM for four independent experiments carried out with different batches of
cells, except for glycogen. Glycogen errors are SD for two independent ex-
periments carried out with different batches of cells.
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measurements assay (Student’s t test, � � 5%). During the
starvation period, nitrogen-starved cells accumulated trehalose
and glycogen. Upon transfer to complete medium, these storage
carbohydrates were degraded, fueling glycolysis and contributing
to the production of ethanol and glycerol.

The measured steady-state fluxes of ethanol, glycerol, and
glucose were used to calculate fluxes through individual enzymes
in the manner detailed in Materials and Methods. Fig. 1 shows the
resulting fluxes of nitrogen- (underlined) and carbon-starved
cultures as a percentage of those in unstarved cultures. Nutrient
starvation resulted in a substantial down-regulation of the fluxes
through all glycolytic and fermentative enzymes, up to �70% in
the case of the GLTs.

Enzyme Activities. Next, we asked to what extent the observed
decrease of the fluxes through the glycolytic enzymes was
regulated through changes of their maximum activities (Vmax).
Therefore, we measured the maximum enzyme activities in
unstarved cells and after 24 h of nitrogen or carbon starvation.

Nutrient starvation resulted in changes of Vmax that varied in
extent and direction (Fig. 3). The cells responded in a very
different way to the two types of starvation. During nitrogen
starvation, the activities of GLT, HK, glucose-6-phosphate
isomerase, ALD, phosphoglycerate mutase, pyruvate kinase,
pyruvate decarboxylase, and alcohol dehydrogenase (ADH)
were down-regulated (Student’s t test � � 5%), whereas the
other enzyme activities remained unchanged within statistical
error. During carbon starvation, on the other hand, only the Vmax
of the GLT decreased significantly, whereas the maximum
activities of TPI and ADH increased (Student’s t test � � 5%).

Regulation Analysis. Nutrient starvation resulted in decreased
fluxes and a variety of Vmax changes. To dissect the extent to
which the changes of Vmax were responsible for the flux changes
from the extent to which the fluxes were, rather, regulated by
changes in their interaction with the rest of metabolism, we
calculated the hierarchical and metabolic regulation coefficients
(see Eqs. 2 and 3). The results are shown in Table 2. The
hierarchical regulation coefficients, �h, ranged between �1.3 and
2.2, spanning all categories of regulation (8). This wide variation
of �h is not a matter of statistical variation (see Table 2).

We distinguish the following categories of regulation:

Purely hierarchical regulation. During nitrogen starvation, the hier-
archical regulation coefficient (�h) of a number of enzymes was
not significantly different from 1. Because the metabolic and the
hierarchical regulation coefficients sum up to 1 (Eq. 1), these
enzymes had a metabolic regulation coefficient (�m) not signif-
icantly different from 0, implying that the change of flux was
regulated predominantly by the change in Vmax, whereas the
interaction with the rest of metabolism made a negligible
contribution. HK and phosphoglycerate mutase were the clear-
est examples of this type of regulation.
Purely metabolic regulation. Enzymes with �h not significantly
different from 0 were found in both types of starvation. For these
enzymes, the flux was predominantly regulated by the interac-
tion with the rest of metabolism without any significant contri-
bution of changes in Vmax. PGK in nitrogen starvation, and
glucose-6-phosphate isomerase, ALD, and phosphoglycerate
mutase in carbon starvation were the clearest examples of this
category.
Cooperative regulation. A number of enzymes were regulated
cooperatively by changes in Vmax and changes in their interaction
with the rest of metabolism, reflected by a �h value between 0
and 1 and significantly different from both 0 and 1. Six-
phosphofructokinase was regulated in this way during nitrogen
starvation and so were GLT and ENO during carbon starvation.
Antagonistic regulation directed by metabolism. Negative �h values
result when the flux changes in opposite direction to the Vmax. In
these cases, �m was �1, implying that the metabolic regulation
dominated and was counteracted by hierarchical regulation,
which acted ‘‘conservatively,’’ in that it attempted to antagonize
the flux change. The regulation of ADH during carbon starva-
tion was an outstanding instance of this category.
Antagonistic regulation directed by Vmax. This category is the opposite
of the previous. �h exceeded 1, and �m was therefore negative. In
these cases, the changes in the interaction with the rest of
metabolism and the changes of Vmax again counteracted each
other, but now the change of Vmax dominated the outcome, with
the metabolic regulation acting conservatively. Only nitrogen
starvation showed enzyme fluxes regulated in this way. PDC and
ADH were the most conspicuous cases. Also, GLT was classified
in this category, but it should be noticed that its �h was very close
to 1, meaning that its regulation was predominantly hierarchical,
with a small, but significant, antagonistic contribution of the
interaction with the rest of metabolism.

Fig. 3. Vmax values as a percentage of those in unstarved cells. The percent-
age of Vmax values with respect to the unstarved condition of glycolytic and
fermentative enzymes and of the GLT are shown: unstarved (black columns),
nitrogen-starved (diagonally striped columns), and carbon starved (gray col-
umns). Error bars of glycolytic and fermentative enzymes represent the per-
centage SEM, with respect to their corresponding unstarved mean Vmax value,
of four independent experiments carried out on different batches of cells.
Error bars of the GLT represent the percentage SD, with respect to the
unstarved mean Vmax value, of two independent experiments carried out on
different batches of cells.

Table 2. Hierarchical and metabolic regulation coefficients of
nitrogen and carbon starvations

Enzyme

Nitrogen starvation Carbon starvation

�h SEM �m �h SEM �m

GLT 1.2 0.1 �0.2 0.4 0.1 0.6
HK 1.0 0.2 0.0 0.1 0.0 0.9
PGI 0.8 0.3 0.2 0.0 0.0 1.0
PFK 0.4 0.2 0.6 0.4 0.4 0.6
ALD 1.1 0.5 �0.1 0.0 0.2 1.0
TPI 0.1 0.9 0.9 �0.4 0.2 1.4
GAPDH 0.7 0.5 0.3 0.1 0.0 0.9
PGK 0.0 0.2 1.0 �0.3 0.1 1.3
PGM 1.0 0.4 0.0 0.0 0.0 1.0
ENO 0.4 0.5 0.6 0.3 0.1 0.7
PK 1.4 0.3 �0.4 0.1 0.0 0.9
PDC 2.3 0.6 �1.3 0.1 0.0 0.9
ADH 1.7 0.4 �0.7 �1.3 0.2 2.3

PDC, pyruvate decarboxylase; PFK, 6-phosphofructokinase; PGI, glucose-6-
phosphate isomerase; PGK, phosphoglycerate kinase; PGM, phosphoglycerate
mutase; PK, pyruvate kinase; TPI, triose-phosphate isomerase.
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Discussion
Nutrient starvation of the yeast S. cerevisiae resulted in de-
creased glucose consumption and decreased ethanol and glyc-
erol production (3, 9, 10, this study). These flux decreases were
accompanied by a limited variety of changes in the maximum
activities of glycolytic and fermentative enzymes. The changes
differed in magnitude and direction among enzymes, and the
profile of these changes differed between starvation types (3,
10). Similar findings have been reported for other transitions,
such as changes of dilution rates in chemostat cultures (2) or
shifts between different growth limitations (1).

Our goal was to understand the regulation of metabolic f luxes
by the concerted action of gene expression and metabolic
interactions. There are two related but different aspects to this
problem. On the one hand, there is the local regulation of fluxes
through individual enzymes, and, on the other hand, there is the
extent to which this local regulation influences the pathway’s
(global) f lux. In this contribution, we expound on how the first
aspect can be understood. Using regulation analysis, we deter-
mined experimentally the type of regulation of fluxes through
individual glycolytic and fermentative enzymes, as yeast was
responding to nutrient starvation. We and others have applied
this method to the regulation of flux through some steps in a
pathway (7, 8, 11). This article reports a comprehensive study
extending regulation analysis to all enzymes in a complete
metabolic pathway so that we could address the validity of a
number of existing paradigms of metabolic regulation of pathway
flux.

In the introduction, we distinguished three regulatory para-
digms, i.e., single enzyme, multisite, or all metabolic. If we
translate these paradigms to the terminology of regulation
analysis, single-enzyme regulation implies that one enzyme is
regulated in a purely hierarchical manner (�h � 1), whereas all
of the others are regulated only through metabolism (�h � 0).
Neither our results nor those of others are compatible with
single-enzyme regulation (1–3, 10).

The hypothesis of multisite modulation proposes metabolite
homeostasis as a constraint to metabolic-flux regulation, excluding
the possibility of metabolic regulation, corresponding to a situation
where �h � 1 for all enzymes. In our carbon-starvation experiments,
however, a number of fluxes through individual enzymes were
regulated exclusively by the interaction of the enzyme with the rest
of metabolism (�h � 0). Among these enzymes, glucose-6-
phosphate isomerase and ALD have a unique isoenzyme form,
excluding that this apparent metabolic regulation is actually caused
by Km changes through the expression of isoenzymes. During
nitrogen starvation, unspecific degradation of proteins via autoph-
agy is enhanced (12), and, therefore, one might have expected a
proportional decrease of all enzyme amounts (corresponding to
multisite modulation). We observed, however, disproportional
changes in enzyme activities (�hs unequal to each other and �1).
Protein degradation is, therefore, unlikely to be the sole cause of
these enzyme-activity changes.

The third paradigm, exclusively metabolic regulation, would
correspond to all �h � 0. Our results are incompatible with this
hypothesis.

If none of these three regulatory paradigms holds true, how
should we then envisage regulation? Within a single pathway,
f luxes through individual enzymes were regulated in different
ways, suggesting that enzymes play different roles in the regu-
lation of the pathway’s f lux. Changes in fluxes through some
enzymes were caused predominantly by changes in enzyme
activities (�h 	 or � 1). The interaction with the rest of
metabolism either complied (�m � 0) or antagonized, diminish-
ing the effect of the enzyme activity change on the local f lux (�m
� 0). In these cases, enzyme-activity changes seemed to ‘‘lead’’
the regulatory response, whereas the compliance or antagonism

of the interaction with the rest of metabolism constituted the
system’s response to this lead. Other enzyme fluxes were regu-
lated with small or no change in enzyme activities (0 � �h �� 1
and �h � 0, respectively). These enzymes seemed to ‘‘follow’’ the
leader enzymes by adjusting their rate through their interaction
with the rest of metabolism. Yet, other enzymes changed their
maximum activity in opposite direction to the change in flux (�h
� 0). These ‘‘conservative’’ enzymes seemed to ‘‘pull back,’’ to
restrain the regulation by the leading enzymes. Interestingly, the
pathway’s regulation profile differed radically between the two
types of starvation. The sets of enzymes leading the regulatory
response, as well as those following or pulling back, differed
between starvation types. Apparently, the regulatory roles of
enzymes are not fixed properties but, rather, change when cells
are challenged in different ways. And this finding is what we
should like to propose as a paradigm for metabolic regulation:
Regulation is diverse within a pathway, some enzymes taking the
lead, others helping, and yet others acting conservatively.

Several experimental limitations constrain further conclusions
from and, indeed, the accuracy of, our analysis. First, some of the
calculated regulation coefficients presented in Table 2 have
relatively high SEMs, due to the necessary (because we are
studying regulation) consideration of changes of fluxes and
enzyme activities instead of absolute values in their calculation.
The large errors limit the application of regulation analysis to the
analysis of perturbations that cause relatively large changes of
flux and stresses on the necessity to further develop the repro-
ducibility of analytical techniques and of cultivation and sam-
pling procedures. However, the large errors do not impede an
unambiguous classification of most enzymes in different regu-
lation categories, proving that these classifications are not just
theoretical possibilities, but actual ways by which living cells
regulate fluxes through individual enzymes. And here, regula-
tion analysis differs from metabolic control analysis, in that
regulation analysis does not require changes to be small.

Another crucial issue is a correct estimation of the local f luxes.
Based on measured fluxes (Table 1), we calculated the fluxes
through individual glycolytic and fermentative enzymes by using
the simplified scheme depicted in Fig. 1. We neglected the
branching fluxes through the pentose phosphate pathway and
through the anabolic pathways. Although the differences be-
tween produced and consumed carbon are not statistically
significant (Fig. 2), mean consumed carbon was in excess with
respect to produced carbon in unstarved cultures, whereas the
reverse was suggested for starved cultures. Because absolute
growth during our 30-min assay is undetectable, we estimated the
fraction of glycolytic f lux diverged into biomass. Because the
biomass yield for optimal anaerobic growth is 0.1 g of biomass
per g of glucose, and the carbon content of biomass is 40% (13),
10%, at most, of the glucose may be incorporated into biomass.
Because S. cerevisiae lacks a transhydrogenase, the pools of
NADPH and NADH are not linked (14). For each mole of
glucose going into biomass, 1 mole of NADPH is required (15).
If 10% of the glucose is used for biomass production, then, at
most, 5% of the glucose flows through the phosphogluconate
pathway (two NADPH are produced per glucose 6-phosphate
rerouted). Based on these calculations, we neglected the
branches into the pentose phosphate pathway and into anabo-
lism: Taking them into account would not change our regulation
coefficients such that our above conclusions would change.

Another simplification in Fig. 1 was the exclusion of fructose-
1,6-bisphosphatase. This enzyme may cause substantial futile
cycling, particularly in the transition from carbon-starved media
to complete media (16). However, in our experimental condi-
tions, the activity of fructose-1,6-bisphosphatase was very low in
all cultures (�0.002 �mol�min�1�mg of protein�1). In contrast to
ref. 16, our starved cells were not adapted to growth on acetate
or another gluconeogenic substrate: The required stimuli for
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triggering the expression of fructose-1,6-bisphosphatase may
have been absent under our experimental conditions.

It is possible to extend regulation analysis to further dissect the
different processes within the hierarchical component (17). In a
pilot experiment, we investigated whether any change in Vmax
occurred at 15 min after the transfer of starved cells into
complete medium, the timescale at which covalent modifications
may occur. The changes in Vmax we measured were not beyond
what was to be expected on the basis of statistical variation, with
the exception of pyruvate kinase (PK). We observed an activa-
tion of PK in nitrogen- and carbon-starved cultures, 6- and
16-fold, respectively (result not shown). Indeed, PK has been
reported to be activated through phosphorylation by protein
kinase A (18).

Concerning the regulation of the pathway’s f lux, our results
suggest that changes outside glycolysis contributed to the de-
crease of glycolytic f lux in carbon-starved cells, regulating
glycolytic enzymes metabolically. The only Vmax that decreased
significantly was that of the GLT. However, the decrease of the
transporter Vmax was only 40% of the decrease of the flux. The
remaining 60% of metabolic regulation is unlikely to be initiated
by any of the other enzymes in the pathway, because no other
Vmax decreased significantly. Thus, part of the metabolic regu-
lation of glycolytic and fermentative enzymes during carbon
starvation must have originated outside the pathway. We mea-
sured the concentrations of two obvious candidates, ATP and
ADP (data not shown). Their ratio did not change (0.7), but
changes in the total concentration of the summed adenine
nucleotides (ATP 
 ADP 
 AMP) may still be involved in the
decrease of glycolytic f lux.

Our results and analysis have shown that pathway fluxes may
be regulated not only through expression of enzymes within the
pathway but also through metabolic regulation that may be
elicited by changes foreign to the pathway in study. Thus, our
findings highlight the need to integrate transcriptome and
proteome analyses with other levels of regulation, including the
metabolic and to do so quantitatively. Using regulation analysis,
we have described the regulation of steady-state fluxes through
individual enzymes, unraveling a previously undescribed com-
plexity of flux regulation. The diversity of regulation within a
common pathway suggests that enzymes play a limited number
of different regulatory roles. We suggest an alternative mecha-
nism for flux modulation, a mechanism in which regulation is not
exclusively hierarchical, as in multisite modulation, nor effected
by a single regulatory enzyme but involves different regulatory
roles for each enzyme and a plasticity that allows these roles to
shift between enzymes when the cell is confronted with different
challenges. Our findings invite us to reconsider our views on
regulatory processes. Regulation of metabolic f luxes needs not
be governed by single drives or constraints but may result from
a combination of the two, and their relative importance may well
vary between challenges.

Materials and Methods
Growth and Starvations. The growth and starvation procedures
have been described in detail in ref. 8. Briefly, S. cerevisiae strain
CEN-PK 113–7D (MATa MAL2–8c SUC2) was grown in pH-
controlled batch cultures at 30°C in defined mineral medium
containing 101 mM glucose (19) kept at pH 5.0. Cells were
harvested by centrifugation at an OD600 nm of 1.0 (exponential
phase). For starvation experiments, the pellets were washed with
equal volumes of ice-cold growth medium lacking either glucose
or ammonium and resuspended in the corresponding medium to
a cell density of 0.75% wet weight (	1g dry weight l�1) at pH 6.0.
The suspensions, of 	300 ml, were kept in 2-liter shake flasks on
a rotary shaker at 30°C and 200 rpm without pH control for 24 h.
For the measurement of steady-state fluxes, the cells were
harvested by centrifugation, resuspended in growth medium

without a carbon source, and kept on ice for, at most, 1 h.
Similarly, for the measurement of zero-trans influx of glucose,
cells were harvested by centrifugation, resuspended in growth
medium lacking carbon and nitrogen sources, and kept on ice for,
at most, 1 h.

Steady-State Fluxes. Steady-state f luxes were measured for 30
min in a cell suspension kept anaerobic at 30°C in a setup
described by Van Hoek et al. (2) for the determination of
fermentative capacity, with the modification that the head-
space was f lushed with N2 instead of CO2. Ethanol, glucose,
glycerol, succinate, acetate, and trehalose were measured by
HPLC (300 mm � 7.8 mm ion exchange column Aminex-HPX
87H (Bio-Rad), with 22.5 mM H2SO4 kept at 55°C as eluent at
the f low rate of 0.5 ml�min�1). Glycogen was assayed according
to Parrou and Francois (20). The rate of carbon dioxide
production was calculated from the production rates of ethanol
and acetate.

The flux through the glucose transporter (GLT) was taken as
equal to the measured glucose consumption flux. The fluxes
through enzymes downstream hexokinase (HK) were calculated
from the steady-state rates of ethanol and glycerol production.
Fig. 1 shows a scheme of the pathway. Enzymes with the same
flux are boxed together. The flux through HK, glucose-6-
phosphate isomerase, 6-phosphofructokinase, and aldolase
(ALD) was calculated by dividing the sum of the glycerol and
ethanol fluxes by two. The flux through triose-phosphate isomer-
ase (TPI) was calculated by subtracting the rate of glycerol from
the flux through the previous block (HK until ALD), and the flux

Fig. 1. Stoichiometry of the glycolytic and fermentative pathways. In this
simplified scheme of the glycolytic and fermentative pathways, enzymes are
boxed, and those with the same flux are boxed together. Measured fluxes are
depicted in boldface letters, and branching metabolites connect the boxes.
Numbers represent the flux percentages of starved cultures with respect to the
unstarved condition. Underlined numbers are the percentage flux of nitro-
gen-starved cultures, and numbers without underline are the corresponding
percentages for carbon-starved cultures. Measured fluxes are distinguished
from calculated fluxes by being represented in boldface letters. GLC, glucose
flux; SC, steady-state degradation of storage carbohydrates; EtOH, ethanol
flux; DHAP, dihydroxyacetonephosphate; GAP, glyceraldehyde-3-phosphate,
GLCi, intracellular glucose; SC, storage carbohydrates. Enzyme abbreviations
are in the main text.
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through the enzymes downstream GAPDH was taken as equal
to the measured ethanol flux.

Glucose-Transport Activity Measurements. Zero-trans inf lux (the
initial rate of transport before the product, intracellular
glucose, builds up) of 14C radiolabeled glucose was measured
in a 5-second uptake assay at 30°C according to Walsh et al.
(21), with the modifications introduced by Rossell et al. (8).
The range of glucose concentrations was between 0.25 and 225
mM. Irreversible Michaelis–Menten equations were fitted to
the results by nonlinear regressing by using SIGMAPLOT 2001
version. 7.0 (SPSS).

Enzyme-Activity Measurements. Enzyme extracts were prepared by
sonication with glass beads at 0°C as described by van Hoek et
al. (2). Enzyme activity assays were carried out on four dilutions
of freshly prepared extracts through NAD(P)H-linked assays as
described by van Hoek et al. (2), by using a Cobas Bio (Roche)
automated analyzer for spectroscopic measurements. As a con-
trol, an extraction was done in the presence and in the absence
of phosphatase inhibitors (10 mM sodium fluoride and 5 mM
sodium pyrophosphate), and Vmax changes were small and within
the expected statistical variation.

Regulation Analysis. Hierarchical regulation coefficients (�h) were
calculated as follows:

�h �
log Vmax�starved � log Vmax�unstarved

log J starved � log Junstarved
, [3]

where the subscripts ‘‘starved’’ and ‘‘unstarved’’ refer to starved
(for nitrogen or carbon) or unstarved cell suspensions, respec-
tively. Each starvation experiment provided three cell suspen-
sions, one for each condition. We performed four independent
starvation experiments to measure Vmax values and another four
to estimate fluxes through individual enzymes. The numerator of
Eq. 3 was calculated for each starvation experiment, the values
were averaged, and their SD was computed. The average and SD
of the denominator was computed in the same way. Dividing
average numerator and denominator yielded the average �h. The
metabolic regulation coefficient was calculated by subtracting �h
from 1.

We thank J. T. Pronk, P. Daran-Lapujade, K. van Dam, and M. J.
Teixeira de Mattos for invaluable discussions and the anonymous
reviewers for their comments. This work was supported by Netherlands
Technology Foundation Grant DGC 5232 and BioSim NoE Grant
FP6-EU.

1. Daran-Lapujade, P., Jansen, M. L., Daran, J. M., van Gulik, W., de Winde, J. H.
& Pronk, J. T. (2004) J. Biol. Chem. 279, 9125–9138.

2. Van Hoek, P., Van Dijken, J. P. & Pronk, J. T. (1998) Appl. Environ. Microbiol.
64, 4226–4233.

3. Nilsson, A., Pahlman, I. L., Jovall, P. A., Blomberg, A., Larsson, C. &
Gustafsson, L. (2001) Yeast 18, 1371–1381.

4. Fell, D. A. & Thomas, S. (1995) Biochem. J. 311, 35–39.
5. Fell, D. A. (1992) Biochem. J. 286, 313–330.
6. Shulman, R. G., Bloch, G. & Rothman, D. L. (1995) Proc. Natl. Acad. Sci. USA

92, 8535–8542.
7. ter Kuile, B. H. & Westerhoff, H. V. (2001) FEBS Lett. 500, 169–171.
8. Rossell, S., van der Weijden, C. C., Kruckeberg, A. L., Bakker, B. M. &

Westerhoff, H. V. (2005) FEMS Yeast Res. 5, 611–619.
9. Rossell, S., van der Weijden, C. C., Kruckeberg, A., Bakker, B. M. &

Westerhoff, H. V. (2002) Mol. Biol. Rep. 29, 255–257.
10. Thomsson, E., Larsson, C., Albers, E., Nilsson, A., Franzen, C. J. & Gustafsson,

L. (2003) Appl. Environ. Microbiol. 69, 3251–3257.
11. Even, S., Lindley, N. D. & Cocaign-Bousquet, M. (2003) Microbiology 149,

1935–1944.
12. Abeliovich, H. & Klionsky, D. J. (2001) Microbiol. Mol. Biol. Rev. 65, 463–479.

13. Verduyn, C., Stouthamer, A. H., Scheffers, W. A. & van Dijken, J. P. (1991)
Antonie Leeuwenhoek 59, 49–63.

14. Bakker, B. M., Overkamp, K. M., van Maris, A. J., Kotter, P., Luttik, M. A.,
van Dijken, J. P. & Pronk, J. T. (2001) FEMS Microbiol. Rev. 25, 15–37.

15. Verduyn, C., Postma, E., Scheffers, W. A. & van Dijken, J. P. (1990) J. Gen.
Microbiol. 136, 395–403.

16. Shulman, R. G. & den Hollander, J. (2004) in Metabolomics by in Vivo NMR,
eds. Shulman, R. G. & Rothman, D. L. (Wiley, New York), pp. 206.

17. Westerhoff, H. V., Reijenga, K. A., Snoep, J. L., Kholodenko, B. N. & ter Kuile,
B. H. (2000) in Animating the Cellular Map, eds. Hofmeyr, J. H. S., Rohwer,
J. M. & Snoep, J. L. (Stellenbosch Univ. Press, Stellenbosch, South Africa), pp.
1–7.

18. Portela, P., Howell, S., Moreno, S. & Rossi, S. (2002) J. Biol. Chem. 277,
30477–30487.

19. Verduyn, C., Postma, E., Scheffers, W. A. & Van Dijken, J. P. (1992) Yeast 8,
501–517.

20. Parrou, J. L. & Francois, J. (1997) Anal. Biochem. 248, 186–188.
21. Walsh, M. C., Smits, H. P., Scholte, M. & van Dam, K. (1994) J Bacteriol. 176,

953–958.

Rossell et al. PNAS � February 14, 2006 � vol. 103 � no. 7 � 2171

CE
LL

BI
O

LO
G

Y


